
ステップI

- Ⅰ 4枚のカード [1]、 [2]、 [2]、 [3]のうち3つの数を選んでできる3けたの整数をつくります。整数は何個できるか、2通りの方法で求めます。
 - (1) 3枚のカードの選び方から考えます。

- (2) 2 のカードだけ2枚あることに注目して考えます。
 - ① もしも2のカードが1枚しかなかったら、

② 2のカードを2枚使うとき、

③ ①②より、全部で

- 2 O、 I、 2、 2の4枚のカードから3枚を選んで3けたの整数をつくるとき、次の問いに答えなさい。
 - (1) もしも2のカードを I 枚しかなかったら、何通りの整数ができますか。

(2) 2 のカードを 2 枚使うとき、何通りの整数ができますか。

(3) 全部で何通りの整数ができますか。

3 1 2 3 4 4の5枚のカードがあります。このうちの3枚を並べて3けたの整数をつくるとき、何通りの整数ができますか。

4 O. I. 2. 3. 3の5枚のカードから3枚を選んで3けたの整数を つくるとき、何通りの整数ができますか。

ステップ2 カードを足して考える① - 3 けた

5	7枚のカード 1、2、2、2、3、3、3のうちの3枚を取り出して
	できる3けたの整数が何通りあるかを求めようと思います。

- 1
 2
 3

 2
 3
- (2) (1)のうち、
 - ① □のカードを3枚使う並べ方は、() 通りです。
 - ② | 「のカードを2枚使う並べ方は、() 通りです。

(3) (1)(2)より、求める3けたの整数は() 通り、となります。

6 6枚のカード 1 2 2 3 3 3 0 うちの 3 枚を取り出してできる 3 けたの整数は何通りありますか。

ステップ3 カードを足して考える②-4けた

7	
	の4枚を取り出してできる4けたの整数が何通りあるかを求めようと
	思います。

- 1
 2
 3

 1
 2
 3

 1
 2
 3

 2
 3
- (2) (1)のうち、 1のカードを4枚使う並べ方は、() 通りです。
- (3) (1)(2)より、求める4けたの整数は () 通り、となります。

8	10 枚のカード 1、1、2、2、2、2、3、3、3、3のうちの4
	枚を取り出してできる4けたの整数が何通りあるかを求めようと思い
	ます。

	2	3
	2	3
	2	3

2 3

(1) もしも のカードも4枚あったとすると、整数は全部で、()×()×()=() 通り

できます。

- (2) (1)のうち、
 - ① □のカードを4枚使う並べ方は、() 通りです。
 - ① □のカードを3枚使う並べ方は、() 通りです。

(3) (1)(2)より、求める4けたの整数は () 通り、となります。

9 9枚のカード 1 1 2 2 2 3 3 3 3 3のうちの4枚を取り出してできる4けたの整数が何通りありますか。

解答 ■

- [] (1) (1、2、2) →3個] (1、2、3) →6個 / 12個 (2、2、3) →3個 」
 - (2) (1) 3, 2, 1, 6
 - 3 6, 6, 12
- 2 (1) 4通り
 - (2) 5通り
 - (3) 9通り
- 3 33通り4 26通り
- (1) 3、3、3、27
 - (2) (1) |
 - 2 6
 - (3) 20
- 19通り
- 7 (1) 3, 3, 3, 3, 81
 - (2)
 - (3) 80
- 8 (1) 3, 3, 3, 81
 - (2) () |
 - 2 8
 - (3) 72
- 9 71 通り

解説

- 2 (I) 2×2=<u>4(通り)</u>
 - (2) $(2,2,0) \rightarrow 2 \ \text{ॿ} \ \text{り}$ $(2,2,1) \rightarrow 3 \ \text{ॿ} \ \text{り}$ $\frac{5 \ \text{ॿ} \ \text{り}}{ }$
 - (3) 4+5=9(通り)
- 3 もしも4が1枚しかなかったら、 $4 \times 3 \times 2 = 24$ (通り)
 - 4を2枚使うのは、

よって、

24+9=<u>33(通り)</u>

- 4 もしも3が1枚しかなかったら、 3×3×2=18(通り)
 - 3を2枚使うのは、

よって、

18+8=26(通り)

- 6
- 1 2 3
- [] 2 3
- [][]3
- |も2も3枚ずつあるとすると、
 - 3 × 3 × 3 = 27(通り)
- |を3枚使うのは|通り
- Ⅰを2枚使うのは、

2を3枚使うのはⅠ通り

よって、

27-(|+6+|)=19(通り)

- 9
- 1 2 3
- 1 2 3
- 2 3
- [][]3
- Ⅰも2も4枚ずつあるとすると、

 $3 \times 3 \times 3 \times 3 = 81$ (通り)

- |を4枚使うのは|通り
- Ⅰを3枚使うのは、

- 2を4枚使うのは1通り
- よって、
 - 81-(1+8+1)=71(通り)